介绍深度学习和几何深度学习的内部机制,重点关注图神经网络,并提供一些关键参考资料。
Abstract
In this expository paper we want to give a brief introduction, with few key references for further reading, to the inner functioning of the new and successfull algorithms of Deep Learning and Geometric Deep Learning with a focus on Graph Neural Networks. We go over the key ingredients for these algorithms: the score and loss function and we explain the main steps for the training of a model. We do not aim to give a complete and exhaustive treatment, but we isolate few concepts to give a fast introduction to the subject. We provide some appendices to complement our treatment discussing Kullback-Leibler divergence, regression, Multi-layer Perceptrons and the Universal Approximation Theorem.
论文:地址
